Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia.
نویسندگان
چکیده
Dominant congenital spinal muscular atrophy (DCSMA) is a disorder of developing anterior horn cells and shows lower-limb predominance and clinical overlap with hereditary spastic paraplegia (HSP), a lower-limb-predominant disorder of corticospinal motor neurons. We have identified four mutations in bicaudal D homolog 2 (Drosophila) (BICD2) in six kindreds affected by DCSMA, DCSMA with upper motor neuron features, or HSP. BICD2 encodes BICD2, a key adaptor protein that interacts with the dynein-dynactin motor complex, which facilitates trafficking of cellular cargos that are critical to motor neuron development and maintenance. We demonstrate that mutations resulting in amino acid substitutions in two binding regions of BICD2 increase its binding affinity for the cytoplasmic dynein-dynactin complex, which might result in the perturbation of BICD2-dynein-dynactin-mediated trafficking, and impair neurite outgrowth. These findings provide insight into the mechanism underlying both the static and the slowly progressive clinical features and the motor neuron pathology that characterize BICD2-associated diseases, and underscore the importance of the dynein-dynactin transport pathway in the development and survival of both lower and upper motor neurons.
منابع مشابه
Dominant spinal muscular atrophy is caused by mutations in BICD2, an important golgin protein
Spinal muscular atrophies (SMAs) are characterized by degeneration of spinal motor neurons and muscle weakness. Autosomal recessive SMA is the most common form and is caused by homozygous deletions/mutations of the SMN1 gene. However, families with dominant inherited SMA have been reported, for most of them the causal gene remains unknown. Recently, we and others have identified heterozygous mu...
متن کاملDisease-associated mutations in human BICD2 hyperactivate motility of dynein–dynactin
Bicaudal D2 (BICD2) joins dynein with dynactin into a ternary complex (termed DDB) capable of processive movement. Point mutations in the BICD2 gene have been identified in patients with a dominant form of spinal muscular atrophy, but how these mutations cause disease is unknown. To investigate this question, we have developed in vitro motility assays with purified DDB and BICD2's membrane vesi...
متن کاملRecessive REEP1 mutation is associated with congenital axonal neuropathy and diaphragmatic palsy
OBJECTIVE To identify the underlying genetic cause of a congenital neuropathy in a 5-year-old boy as part of a cohort of 32 patients from 23 families with genetically unresolved neuropathies. METHODS We used autozygosity mapping coupled with next-generation sequencing to investigate a consanguineous family from Lebanon with 1 affected and 2 healthy children. Variants were investigated for seg...
متن کاملDisruption of Axonal Transport in Motor Neuron Diseases
Motor neurons typically have very long axons, and fine-tuning axonal transport is crucial for their survival. The obstruction of axonal transport is gaining attention as a cause of neuronal dysfunction in a variety of neurodegenerative motor neuron diseases. Depletions in dynein and dynactin-1, motor molecules regulating axonal trafficking, disrupt axonal transport in flies, and mutations in th...
متن کاملN88S seipin mutant transgenic mice develop features of seipinopathy/BSCL2-related motor neuron disease via endoplasmic reticulum stress.
Heterozygosity for mutations (N88S and P90L) in the N-glycosylation site of seipin/BSCL2 is associated with the autosomal dominant motor neuron diseases, spastic paraplegia 17 and distal hereditary motor neuropathy type V, referred to as 'seipinopathies'. Previous in vitro studies have shown that seipinopathy-linked mutations result in accumulation of unfolded proteins in the endoplasmic reticu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of human genetics
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2013